跳到主要内容

红黑树

提示
  1. 基本特征:红黑树是一种自平衡二叉搜索树,特点是每个节点都有一个颜色属性(红色或黑色),并且遵循特定的平衡规则以保持树的平衡。
  2. 平衡规则:红黑树的平衡规则包括根节点必须是黑色,红色节点的子节点必须是黑色,从任一节点到其每个叶子的所有路径都包含相同数量的黑色节点。
  3. 操作方法:红黑树的操作包括插入、删除和旋转(左旋和右旋),这些操作都是为了维持或恢复树的红黑属性和平衡。

红黑树是一种自平衡的二叉搜索树,每个节点包含一个额外的位来表示节点的颜色,红色或黑色。

红黑树满足以下属性:

  1. 红/黑属性: 每个节点都被着色,要么是红色,要么是黑色。
  2. 根属性: 根节点是黑色的。
  3. 叶子属性: 每个叶子节点(NIL)都是黑色的。
  4. 红色属性: 如果一个红色节点有孩子节点,那么这些孩子节点都是黑色的。
  5. 深度属性: 对于每个节点,从该节点到其任何后代叶子节点的任何简单路径都具有相同的黑色深度(黑色节点的数量)。

一个红黑树的例子是:

红黑树

每个节点具有以下属性:

  • 颜色
  • 键值
  • 左孩子
  • 右孩子
  • 父节点(根节点除外)

红黑树如何维持自平衡属性?

红黑色用于平衡树。

节点颜色的限制确保从根到叶的任何简单路径不会比其他路径长两倍以上。这有助于维持红黑树的自平衡属性。

对红黑树的操作

可以对红黑树执行的各种操作包括:

旋转红黑树的子树

在旋转操作中,子树的节点位置被交换。

旋转操作用于在其他操作(如插入和删除)违反了红黑树的属性时,维持红黑树的属性。

有两种类型的旋转:

左旋

左旋时,右侧节点的排列转变为左侧节点的排列。

算法

  1. 初始树为: 左旋

  2. 如果 y 有左子树,则将 x 指定为 y 的左子树的父节点。 左旋

  3. 如果 x 的父节点是 NULL,则将 y 设为树的根节点。

  4. 否则如果 x 是其父节点 p 的左孩子,则将 y 设为 p 的左孩子。

  5. 否则将 y 指定为 p 的右孩子。 左旋

  6. y 设为 x 的父节点。 左旋

右旋

右旋时,左侧节点的排列转变为右侧节点的排列。

  1. 初始树为: 右旋

  2. 如果 x 有右子树,则将 y 指定为 x 的右子树的父节点。 右旋

  3. 如果 y 的父节点是 NULL,则将 x 设为树的根节点。

  4. 否则如果 y 是其父节点 p 的右孩子,则将 x 设为 p 的右孩子。

  5. 否则将 x 指定为 p 的左孩子。 右旋

  6. x 设为 y 的父节点。 右旋

左-右和右-左旋转

在左-右旋转中,首先将结构向左移动,然后再向右移动。

  1. 对 x-y 进行左旋。 左-右旋转

  2. 对 y-z 进行右旋。 左-右旋转

在右-左旋转中,首先将结构向右移动,然后再向左移动。

  1. 对 x-y 进行右旋。 右-左旋转

  2. 对 z-y 进行左旋。 右-左旋转

向红黑树中插入元素

在插入新节点时,新节点总是作为红色节点被插入。插入新节点后,如果树违反了红黑树的性质,我们将执行以下操作。

  1. 重新着色
  2. 旋转

插入节点的算法

向红黑树中插入新元素时,需遵循以下步骤:

  1. 设 y 为叶子节点(即 NIL),x 为树的根。
  2. 检查树是否为空(即 x 是否为 NIL)。如果是,将 newNode 插入为根节点,并将其着色为黑色。
  3. 否则,重复以下步骤,直到到达叶子节点(NIL)。
  4. 比较 newKeyrootKey
  5. 如果 newKey 大于 rootKey,则遍历右子树。
  6. 否则遍历左子树。

将叶节点的父节点指定为newNode的父节点。 如果leafKey大于newKey,则将newNode设置为rightChild。 否则,将newNode设置为leftChild。 将newNode的左右子节点指定为NULL。 将newNode的颜色设置为红色。 如果违反了红黑树的属性,调用InsertFix算法进行维护。

为什么新插入的节点在红黑树中总是红色的?

这是因为插入红色节点不会违反红黑树的深度属性。

如果将红色节点附加到红色节点上,那么就违反了规则,但这个问题比违反深度属性引入的问题更容易解决。

插入后维护红黑属性的算法

如果新节点的插入违反了红黑树的属性,使用此算法来维护红黑树的属性。

  1. newNode的父节点p为红色时,执行以下操作。
  2. 如果pnewNode的祖父节点gP的左子节点,执行以下操作。 情况一:
  3. 如果gP的右子节点为红色,则将gP的两个子节点颜色设置为黑色,gP的颜色设置为红色。
  4. gP赋值给newNode情况二:
  5. 否则,如果newNodep的右子节点,则将p赋值给newNode
  6. newNode进行左旋。 情况三:
  7. p的颜色设置为黑色,gP的颜色设置为红色。
  8. gP进行右旋。

否则,执行以下操作。

  1. 如果gP的左子节点为红色,将gP的两个子节点颜色设置为黑色,gP的颜色设置为红色。
  2. gP赋值给newNode
  3. 否则,如果newNodep的左子节点,将p赋值给newNode并对newNode进行右旋。
  4. p的颜色设置为黑色,gP的颜色设置为红色。
  5. gP进行左旋。

将树的根节点设置为黑色。

从红黑树中删除元素

该操作从树中移除一个节点。删除节点后,再次维护红黑属性。

删除节点的算法

  1. 保存nodeToBeDeleted的颜色到origrinalColor

  2. 如果nodeToBeDeleted的左子节点是NULL

  3. nodeToBeDeleted的右子节点赋值给x

  4. x替换nodeToBeDeleted

否则,如果nodeToBeDeleted的右子节点是NULL

  1. nodeToBeDeleted的左子节点赋值给x
  2. x替换nodeToBeDeleted

否则

  1. noteToBeDeleted的右子树的最小值赋值给y
  2. 保存y的颜色到originalColor
  3. yrightChild赋值给x
  4. 如果ynodeToBeDeleted的子节点,则将x的父节点设置为y
  5. 否则,用yrightChild替换y
  6. y替换`nodeTo

BeDeleted。 7. 将y的颜色设置为originalColor`。

如果originalColor是黑色,调用DeleteFix(x)。

删除后维护红黑属性的算法

当删除黑色节点时实现此算法,因为它违反了红黑树的黑色深度属性。

这种违规通过假设节点x(占据y原来的位置)具有额外的黑色来纠正。这使得节点x既不是红色也不是黑色。它要么是双倍黑色,要么是黑红色。这违反了红黑属性。

然而,x的颜色属性没有改变,而是通过x指向的节点来表示额外的黑色。

如果以下情况发生,则可以移除额外的黑色:

  1. 它到达根节点。
  2. 如果x指向一个红黑节点。在这种情况下,x被着色为黑色。
  3. 执行适当的旋转和重新着色。

以下算法保留了红黑树的属性。

  1. 直到x不是树的根节点且x的颜色是黑色,执行以下操作

  2. 如果x是其父节点的左子节点,执行以下操作:

  3. w赋值为x的兄弟节点。

  4. 如果x父节点的右子节点是红色的, 情况一:

  5. x父节点的右子节点颜色设置为黑色。

  6. x的父节点颜色设置为红色。

  7. x的父节点进行左旋。

  8. x的父节点的rightChild赋值给w

如果w的右子节点和leftChild的颜色都是黑色, 情况二:

  1. w的颜色设置为红色。
  2. x的父节点赋值给x

否则,如果wrightChild颜色是黑色, 情况三:

  1. wleftChild颜色设置为黑色。

  2. w的颜色设置为红色。

  3. w进行右旋。

  4. x的父节点的rightChild赋值给w。 如果上述情况都没有发生,那么执行以下操作。

    情况四:

  5. w 的颜色设置为 x 的父节点的颜色。

  6. x 的父节点的颜色设置为黑色。

  7. w 的右子节点的颜色设置为黑色。

  8. x 的父节点进行左旋。

  9. x 设置为树的根。

否则,如上所述,将右改为左,反之亦然。 将 x 的颜色设置为黑色。

有关更多示例和解释,请参考 插入操作删除操作

Python、Java 和 C/C++ 示例

Python 示例 Java 示例 C 示例 C++ 示例

# 用 Python 实现红黑树

import sys

# 节点创建
class Node():
def __init__(self, item):
self.item = item
self.parent = None
self.left = None
self.right = None
self.color = 1

class RedBlackTree():
def __init__(self):
self.TNULL = Node(0)
self.TNULL.color = 0
self.TNULL.left = None
self.TNULL.right = None
self.root = self.TNULL

# 先序遍历
def pre_order_helper(self, node):
if node != TNULL:
sys.stdout.write(node.item + " ")
self.pre_order_helper(node.left)
self.pre_order_helper(node.right)

# 中序遍历
def in_order_helper(self, node):
if node != TNULL:
self.in_order_helper(node.left)
sys.stdout.write(node.item + " ")
self.in_order_helper(node.right)

# 后序遍历
def post_order_helper(self, node):
if node != TNULL:
self.post_order_helper(node.left)
self.post_order_helper(node.right)
sys.stdout.write(node.item + " ")

# 搜索树
def search_tree_helper(self, node, key):
if node == TNULL or key == node.item:
return node

if key < node.item:
return self.search_tree_helper(node.left, key)
return self.search_tree_helper(node.right, key)

# 删除后平衡树
def delete_fix(self, x):
while x != self.root and x.color == 0:
if x == x.parent.left:
s = x.parent.right
if s.color == 1:
s.color = 0
x.parent.color = 1
self.left_rotate(x.parent)
s = x.parent.right

if s.left.color == 0 and s.right.color == 0:
s.color = 1
x = x.parent
else:
if s.right.color == 0:
s.left.color = 0
s.color = 1
self.right_rotate(s)
s = x.parent.right

s.color = x.parent.color
x.parent.color = 0
s.right.color = 0
self.left_rotate(x.parent)
x = self.root
else:
s = x.parent.left
if s.color == 1:
s.color = 0
x.parent.color = 1
self.right_rotate(x.parent)
s = x.parent.left

if s.right.color == 0 and s.right.color == 0:
s.color = 1
x = x.parent
else:
if s.left.color == 0:
s.right.color = 0
s.color = 1
self.left_rotate(s)
s = x.parent.left

s.color = x.parent.color
x.parent.color = 0
s.left.color = 0
self.right_rotate(x.parent)
x = self.root
x.color = 0

def __rb_transplant(self, u, v):
if u.parent == None:
self.root = v
elif u == u.parent.left:
u.parent.left = v
else:
u.parent.right = v
v.parent = u.parent

# 删除节点
def delete_node_helper(self, node, key):
z = self.TNULL
while node != self.TNULL:
if node.item == key:
z = node
if node.item <= key:
node = node.right
else:
node = node.left

if z == self.TNULL:
print("树中找不到该键值")
return

y = z
y_original_color = y.color
if z.left == self.TNULL:
x = z.right
self.__rb_transplant(z, z.right)
elif (z.right == self.TNULL):
x = z.left
self.__rb_transplant(z, z.left)
else:
y = self.minimum(z.right)
y_original_color = y.color
x = y.right
if y.parent == z:
x.parent = y
else:
self.__rb_transplant(y, y.right)
y.right = z.right
y.right.parent = y

self.__rb_transplant(z, y)
y.left = z.left
y.left.parent = y
y.color = z.color
if y_original_color == 0:
self.delete_fix(x)

# 插入后平衡树
def fix_insert(self, k):
while k.parent.color == 1:
if k.parent == k.parent.parent.right:
u = k.parent.parent.left
if u.color == 1:
u.color = 0
k.parent.color = 0
k.parent.parent.color = 1
k = k.parent.parent
else:
if k == k.parent.left:
k = k.parent
self.right_rotate(k)
k.parent.color = 0
k.parent.parent.color = 1
self.left_rotate(k.parent.parent)
else:
u = k.parent.parent.right

if u.color == 1:
u.color = 0
k.parent.color = 0
k.parent.parent.color = 1
k = k.parent.parent
else:
if k == k.parent.right:
k = k.parent
self.left_rotate(k)
k.parent.color = 0
k.parent.parent.color = 1
self.right_rotate(k.parent.parent)
if k == self.root:
break
self.root.color = 0

# 打印树
def __print_helper(self, node, indent, last):
if node != self.TNULL:
sys.stdout.write(indent)
if last:
sys.stdout.write("R----")
indent += " "
else:
sys.stdout.write("L----")
indent += "| "

s_color = "RED" if node.color == 1 else "BLACK"
print(str(node.item) + "(" + s_color + ")")
self.__print_helper(node.left, indent, False)
self.__print_helper(node.right, indent, True)

def preorder(self):
self.pre_order_helper(self.root)

def inorder(self):
self.in_order_helper(self.root)

def postorder(self):
self.post_order_helper(self.root)

def searchTree(self, k):
return self.search_tree_helper(self.root, k)

def minimum(self, node):
while node.left != self.TNULL:
node = node.left
return node

def maximum(self, node):
while node.right != self.TNULL:
node = node.right
return node

def successor(self, x):
if x.right != self.TNULL:
return self.minimum(x.right)

y = x.parent
while y != self.TNULL and x == y.right:
x = y
y = y.parent
return y

def predecessor(self, x):
if (x.left != self.TNULL):
return self.maximum(x.left)

y = x.parent
while y != self.TNULL and x == y.left:
x = y
y = y.parent

return y

def left_rotate(self, x):
y = x.right
x.right = y.left
if y.left != self.TNULL:
y.left.parent = x

y.parent = x.parent
if x.parent == None:
self.root = y
elif x == x.parent.left:
x.parent.left = y
else:
x.parent.right = y
y.left = x
x.parent = y

def right_rotate(self, x):
y = x.left
x.left = y.right
if y.right != self.TNULL:
y.right.parent = x

y.parent = x.parent
if x.parent == None:
self.root = y
elif x == x.parent.right:
x.parent.right = y
else:
x.parent.left = y
y.right = x
x.parent = y

def insert(self, key):
node = Node(key)
node.parent = None
node.item = key
node.left = self.TNULL
node.right = self.TNULL
node.color = 1

y = None
x = self.root

while x != self.TNULL:
y = x
if node.item < x.item:
x = x.left
else:
x = x.right

node.parent = y
if y == None:
self.root = node
elif node.item < y.item:
y.left = node
else:
y.right = node

if node.parent == None:
node.color = 0
return

if node.parent.parent == None:
return

self.fix_insert(node)

def get_root(self):
return self.root

def delete_node(self, item):
self.delete_node_helper(self.root, item)

def print_tree(self):
self.__print_helper(self.root, "", True)


if __name__ == "__main__":
bst = RedBlackTree()

bst.insert(55)
bst.insert(40)
bst.insert(65)
bst.insert(60)
bst.insert(75)
bst.insert(57)

bst.print_tree()

print("\nAfter deleting an element")
bst.delete_node(40)
bst.print_tree()

// 在Java中实现红黑树

class Node {
int data;
Node parent;
Node left;
Node right;
int color;
}

public class RedBlackTree {
private Node root;
private Node TNULL;

// 前序遍历
private void preOrderHelper(Node node) {
if (node != TNULL) {
System.out.print(node.data + " ");
preOrderHelper(node.left);
preOrderHelper(node.right);
}
}

// 中序遍历
private void inOrderHelper(Node node) {
if (node != TNULL) {
inOrderHelper(node.left);
System.out.print(node.data + " ");
inOrderHelper(node.right);
}
}

// 后序遍历
private void postOrderHelper(Node node) {
if (node != TNULL) {
postOrderHelper(node.left);
postOrderHelper(node.right);
System.out.print(node.data + " ");
}
}

// 搜索树
private Node searchTreeHelper(Node node, int key) {
if (node == TNULL || key == node.data) {
return node;
}

if (key < node.data) {
return searchTreeHelper(node.left, key);
}
return searchTreeHelper(node.right, key);
}

// 删除节点后平衡树
private void fixDelete(Node x) {
Node s;
while (x != root && x.color == 0) {
if (x == x.parent.left) {
s = x.parent.right;
if (s.color == 1) {
s.color = 0;
x.parent.color = 1;
leftRotate(x.parent);
s = x.parent.right;
}

if (s.left.color == 0 && s.right.color == 0) {
s.color = 1;
x = x.parent;
} else {
if (s.right.color == 0) {
s.left.color = 0;
s.color = 1;
rightRotate(s);
s = x.parent.right;
}

s.color = x.parent.color;
x.parent.color = 0;
s.right.color = 0;
leftRotate(x.parent);
x = root;
}
} else {
s = x.parent.left;
if (s.color == 1) {
s.color = 0;
x.parent.color = 1;
rightRotate(x.parent);
s = x.parent.left;
}

if (s.right.color == 0 && s.right.color == 0) {
s.color = 1;
x = x.parent;
} else {
if (s.left.color == 0) {
s.right.color = 0;
s.color = 1;
leftRotate(s);
s = x.parent.left;
}

s.color = x.parent.color;
x.parent.color = 0;
s.left.color = 0;
rightRotate(x.parent);
x = root;
}
}
}
x.color = 0;
}

private void rbTransplant(Node u, Node v) {
if (u.parent == null) {
root = v;
} else if (u == u.parent.left) {
u.parent.left = v;
} else {
u.parent.right = v;
}
v.parent = u.parent;
}

private void deleteNodeHelper(Node node, int key) {
Node z = TNULL;
Node x, y;
while (node != TNULL) {
if (node.data == key) {
z = node;
}

if (node.data <= key) {
node = node.right;
} else {
node = node.left;
}
}

if (z == TNULL) {
System.out.println("在树中找不到键");
return;
}

y = z;
int yOriginalColor = y.color;
if (z.left == TNULL) {
x = z.right;
rbTransplant(z, z.right);
} else if (z.right == TNULL) {
x = z.left;
rbTransplant(z, z.left);
} else {
y = minimum(z.right);
yOriginalColor = y.color;
x = y.right;
if (y.parent == z) {
x.parent = y;
} else {
rbTransplant(y, y.right);
y.right = z.right;
y.right.parent = y;
}

rbTransplant(z, y);
y.left = z.left;
y.left.parent = y;
y.color = z.color;
}
if (yOriginalColor == 0) {
fixDelete(x);
}
}

// Balance the node after insertion
private void fixInsert(Node k) {
Node u;
while (k.parent.color == 1) {
if (k.parent == k.parent.parent.right) {
u = k.parent.parent.left;
if (u.color == 1) {
u.color = 0;
k.parent.color = 0;
k.parent.parent.color = 1;
k = k.parent.parent;
} else {
if (k == k.parent.left) {
k = k.parent;
rightRotate(k);
}
k.parent.color = 0;
k.parent.parent.color = 1;
leftRotate(k.parent.parent);
}
} else {
u = k.parent.parent.right;

if (u.color == 1) {
u.color = 0;
k.parent.color = 0;
k.parent.parent.color = 1;
k = k.parent.parent;
} else {
if (k == k.parent.right) {
k = k.parent;
leftRotate(k);
}
k.parent.color = 0;
k.parent.parent.color = 1;
rightRotate(k.parent.parent);
}
}
if (k == root) {
break;
}
}
root.color = 0;
}

private void printHelper(Node root, String indent, boolean last) {
if (root != TNULL) {
System.out.print(indent);
if (last) {
System.out.print("R----");
indent += " ";
} else {
System.out.print("L----");
indent += "| ";
}

String sColor = root.color == 1 ? "RED" : "BLACK";
System.out.println(root.data + "(" + sColor + ")");
printHelper(root.left, indent, false);
printHelper(root.right, indent, true);
}
}

public RedBlackTree() {
TNULL = new Node();
TNULL.color = 0;
TNULL.left = null;
TNULL.right = null;
root = TNULL;
}

public void preorder() {
preOrderHelper(this.root);
}

public void inorder() {
inOrderHelper(this.root);
}

public void postorder() {
postOrderHelper(this.root);
}

public Node searchTree(int k) {
return searchTreeHelper(this.root, k);
}

public Node minimum(Node node) {
while (node.left != TNULL) {
node = node.left;
}
return node;
}

public Node maximum(Node node) {
while (node.right != TNULL) {
node = node.right;
}
return node;
}

public Node successor(Node x) {
if (x.right != TNULL) {
return minimum(x.right);
}

Node y = x.parent;
while (y != TNULL && x == y.right) {
x = y;
y = y.parent;
}
return y;
}

public Node predecessor(Node x) {
if (x.left != TNULL) {
return maximum(x.left);
}

Node y = x.parent;
while (y != TNULL && x == y.left) {
x = y;
y = y.parent;
}

return y;
}

public void leftRotate(Node x) {
Node y = x.right;
x.right = y.left;
if (y.left != TNULL) {
y.left.parent = x;
}
y.parent = x.parent;
if (x.parent == null) {
this.root = y;
} else if (x == x.parent.left) {
x.parent.left = y;
} else {
x.parent.right = y;
}
y.left = x;
x.parent = y;
}

public void rightRotate(Node x) {
Node y = x.left;
x.left = y.right;
if (y.right != TNULL) {
y.right.parent = x;
}
y.parent = x.parent;
if (x.parent == null) {
this.root = y;
} else if (x == x.parent.right) {
x.parent.right = y;
} else {
x.parent.left = y;
}
y.right = x;
x.parent = y;
}

public void insert(int key) {
Node node = new Node();
node.parent = null;
node.data = key;
node.left = TNULL;
node.right = TNULL;
node.color = 1;

Node y = null;
Node x = this.root;

while (x != TNULL) {
y = x;
if (node.data < x.data) {
x = x.left;
} else {
x = x.right;
}
}

node.parent = y;
if (y == null) {
root = node;
} else if (node.data < y.data) {
y.left = node;
} else {
y.right = node;
}

if (node.parent == null) {
node.color = 0;
return;
}

if (node.parent.parent == null) {
return;
}

fixInsert(node);
}

public Node getRoot() {
return this.root;
}

public void deleteNode(int data) {
deleteNodeHelper(this.root, data);
}

public void printTree() {
printHelper(this.root, "", true);
}

public static void main(String[] args) {
RedBlackTree bst = new RedBlackTree();
bst.insert(55);
bst.insert(40);
bst.insert(65);
bst.insert(60);
bst.insert(75);
bst.insert(57);
bst.printTree();

System.out.println("\nAfter deleting:");
bst.deleteNode(40);
bst.printTree();
}
}
// 用 C 语言实现红黑树

#include <stdio.h>
#include <stdlib.h>

enum nodeColor {
RED,
BLACK
};

struct rbNode {
int data, color;
struct rbNode *link[2];
};

struct rbNode *root = NULL;

// 创建红黑树
struct rbNode *createNode(int data) {
struct rbNode *newnode;
newnode = (struct rbNode *)malloc(sizeof(struct rbNode));
newnode->data = data;
newnode->color = RED;
newnode->link[0] = newnode->link[1] = NULL;
return newnode;
}

// 插入节点
void insertion(int data) {
struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr;
int dir[98], ht = 0, index;
ptr = root;
if (!root) {
root = createNode(data);
return;
}

stack[ht] = root;
dir[ht++] = 0;
while (ptr != NULL) {
if (ptr->data == data) {
printf("不允许插入重复元素!\n");
return;
}
index = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
ptr = ptr->link[index];
dir[ht++] = index;
}
stack[ht - 1]->link[index] = newnode = createNode(data);
while ((ht >= 3) && (stack[ht - 1]->color == RED)) {
if (dir[ht - 2] == 0) {
yPtr = stack[ht - 2]->link[1];
if (yPtr != NULL && yPtr->color == RED) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 0) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[1];
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
stack[ht - 2]->link[0] = yPtr;
}
xPtr = stack[ht - 2];
xPtr->color = RED;
yPtr->color = BLACK;
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
} else {
yPtr = stack[ht - 2]->link[0];
if ((yPtr != NULL) && (yPtr->color == RED)) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 1) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[0];
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
stack[ht - 2]->link[1] = yPtr;
}
xPtr = stack[ht - 2];
yPtr->color = BLACK;
xPtr->color = RED;
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
}
}
root->color = BLACK;
}

// 删除节点
void deletion(int data) {
struct rbNode *stack[98], *ptr, *xPtr, *yPtr;
struct rbNode *pPtr, *qPtr, *rPtr;
int dir[98], ht = 0, diff, i;
enum nodeColor color;

if (!root) {
printf("树不存在\n");


return;
}

ptr = root;
while (ptr != NULL) {
if ((data - ptr->data) == 0)
break;
diff = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
dir[ht++] = diff;
ptr = ptr->link[diff];
}

if (ptr->link[1] == NULL) {
if ((ptr == root) && (ptr->link[0] == NULL)) {
free(ptr);
root = NULL;
} else if (ptr == root) {
root = ptr->link[0];
free(ptr);
} else {
stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0];
}
} else {
xPtr = ptr->link[1];
if (xPtr->link[0] == NULL) {
xPtr->link[0] = ptr->link[0];
color = xPtr->color;
xPtr->color = ptr->color;
ptr->color = color;

if (ptr == root) {
root = xPtr;
} else {
stack[ht - 1]->link[dir[ht - 1]] = xPtr;
}

dir[ht] = 1;
stack[ht++] = xPtr;
} else {
i = ht++;
while (1) {
dir[ht] = 0;
stack[ht++] = xPtr;
yPtr = xPtr->link[0];
if (!yPtr->link[0])
break;
xPtr = yPtr;
}

dir[i] = 1;
stack[i] = yPtr;
if (i > 0)
stack[i - 1]->link[dir[i - 1]] = yPtr;

yPtr->link[0] = ptr->link[0];

xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = ptr->link[1];

if (ptr == root) {
root = yPtr;
}

color = yPtr->color;
yPtr->color = ptr->color;
ptr->color = color;
}
}

if (ht < 1)
return;

if (ptr->color == BLACK) {
while (1) {
pPtr = stack[ht - 1]->link[dir[ht - 1]];
if (pPtr && pPtr->color == RED) {
pPtr->color = BLACK;
break;
}

if (ht < 2)
break;

if (dir[ht - 2] == 0) {
rPtr = stack[ht - 1]->link[1];

if (!rPtr)
break;

if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];

if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 0;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;

rPtr = stack[ht - 1]->link[1];
}

if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (!rPtr->link[1] || rPtr->link[1]->color == BLACK) {
qPtr = rPtr->link[0];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[0] = qPtr->link[1];
qPtr->link[1] = rPtr;
rPtr = stack[ht - 1]->link[1] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[1]->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
} else {
rPtr = stack[ht - 1]->link[0];
if (!rPtr)
break;

if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];

if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 1;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;

rPtr = stack[ht - 1]->link[0];
}
if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (!rPtr->link[0] || rPtr->link[0]->color == BLACK) {
qPtr = rPtr->link[1];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[1] = qPtr->link[0];
qPtr->link[0] = rPtr;
rPtr = stack[ht - 1]->link[0] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[0]->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
}
ht--;
}
}
}

// Print the inorder traversal of the tree
void inorderTraversal(struct rbNode *node) {
if (node) {
inorderTraversal(node->link[0]);
printf("%d ", node->data);
inorderTraversal(node->link[1]);
}
return;
}

// Driver code
int main() {
int ch, data;
while (1) {
printf("1. Insertion\t2. Deletion\n");
printf("3. Traverse\t4. Exit");
printf("\nEnter your choice:");
scanf("%d", &ch);
switch (ch) {
case 1:
printf("Enter the element to insert:");
scanf("%d", &data);
insertion(data);
break;
case 2:
printf("Enter the element to delete:");
scanf("%d", &data);
deletion(data);
break;
case 3:
inorderTraversal(root);
printf("\n");
break;
case 4:
exit(0);
default:
printf("Not available\n");
break;
}
printf("\n");
}
return 0;
}
// 在C++中实现红黑树

#include <iostream>
using namespace std;

struct Node {
int data;
Node *parent;
Node *left;
Node *right;
int color;
};

typedef Node *NodePtr;

class RedBlackTree {
private:
NodePtr root;
NodePtr TNULL;

// 初始化空节点
void initializeNULLNode(NodePtr node, NodePtr parent) {
node->data = 0;
node->parent = parent;
node->left = nullptr;
node->right = nullptr;
node->color = 0;
}

// 前序遍历
void preOrderHelper(NodePtr node) {
if (node != TNULL) {
cout << node->data << " ";
preOrderHelper(node->left);
preOrderHelper(node->right);
}
}

// 中序遍历
void inOrderHelper(NodePtr node) {
if (node != TNULL) {
inOrderHelper(node->left);
cout << node->data << " ";
inOrderHelper(node->right);
}
}

// 后序遍历
void postOrderHelper(NodePtr node) {
if (node != TNULL) {
postOrderHelper(node->left);
postOrderHelper(node->right);
cout << node->data << " ";
}
}

// 搜索树
NodePtr searchTreeHelper(NodePtr node, int key) {
if (node == TNULL || key == node->data) {
return node;
}

if (key < node->data) {
return searchTreeHelper(node->left, key);
}
return searchTreeHelper(node->right, key);
}

// 删除节点后的平衡处理
void deleteFix(NodePtr x) {
NodePtr s;
while (x != root && x->color == 0) {
if (x == x->parent->left) {
s = x->parent->right;
if (s->color == 1) {
s->color = 0;
x->parent->color = 1;
leftRotate(x->parent);
s = x->parent->right;
}

if (s->left->color == 0 && s->right->color == 0) {
s->color = 1;
x = x->parent;
} else {
if (s->right->color == 0) {
s->left->color = 0;
s->color = 1;
rightRotate(s);
s = x->parent->right;
}

s->color = x->parent->color;
x->parent->color = 0;
s->right->color = 0;
leftRotate(x->parent);
x = root;
}
} else {
s = x->parent->left;
if (s->color == 1) {
s->color = 0;
x->parent->color = 1;
rightRotate(x->parent);
s = x->parent->left;
}

if (s->right->color == 0 && s->right->color == 0) {
s->color = 1;
x = x->parent;
} else {
if (s->left->color == 0) {
s->right->color = 0;
s->color = 1;
leftRotate(s);
s = x->parent->left;
}

s->color = x->parent->color;
x->parent->color = 0;
s->left->color = 0;
rightRotate(x->parent);
x = root;
}
}
}
x->color = 0;
}

// 替换节点
void rbTransplant(NodePtr u, NodePtr v) {
if (u->parent == nullptr) {
root = v;
} else if (u == u->parent->left) {
u->parent->left = v;
} else {
u->parent->right = v;
}
v->parent = u->parent;
}

// 删除节点
void deleteNodeHelper(NodePtr node, int key) {
NodePtr z = TNULL;
NodePtr x, y;
while (node != TNULL) {
if (node->data == key) {
z = node;
}

if (node->data <= key) {
node = node->right;
} else {
node = node->left;
}
}

if (z == TNULL) {
cout << "树

中未找到键" << endl;
return;
}

y = z;
int y_original_color = y->color;
if (z->left == TNULL) {
x = z->right;
rbTransplant(z, z->right);
} else if (z->right == TNULL) {
x = z->left;
rbTransplant(z, z->left);
} else {
y = minimum(z->right);
y_original_color = y->color;
x = y->right;
if (y->parent == z) {
x->parent = y;
} else {
rbTransplant(y, y->right);
y->right = z->right;
y->right->parent = y;
}

rbTransplant(z, y);
y->left = z->left;
y->left->parent = y;
y->color = z->color;
}
delete z;
if (y_original_color == 0) {
deleteFix(x);
}
}

// 插入节点后的平衡处理
void insertFix(NodePtr k) {
NodePtr u;
while (k->parent->color == 1) {
if (k->parent == k->parent->parent->right) {
u = k->parent->parent->left;
if (u->color == 1) {
u->color = 0;
k->parent->color = 0;
k->parent->parent->color = 1;
k = k->parent->parent;
} else {
if (k == k->parent->left) {
k = k->parent;
rightRotate(k);
}
k->parent->color = 0;
k->parent->parent->color = 1;
leftRotate(k->parent->parent);
}
} else {
u = k->parent->parent->right;

if (u->color == 1) {
u->color = 0;
k->parent->color = 0;
k->parent->parent->color = 1;
k = k->parent->parent;
} else {
if (k == k->parent->right) {
k = k->parent;
leftRotate(k);
}
k->parent->color = 0;
k->parent->parent->color = 1;
rightRotate(k->parent->parent);
}
}
if (k == root) {
break;
}
}
root->color = 0;
}

// 打印树
void printHelper(NodePtr root, string indent, bool last) {
if (root != TNULL) {
cout << indent;
if (last) {
cout << "R----";
indent += " ";
} else {
cout << "L----";
indent += "| ";
}

string sColor = root->color ? "RED" : "BLACK";
cout << root->data << "(" << sColor << ")" << endl;
printHelper(root->left, indent, false);
printHelper(root->right, indent, true);
}
}

public:
// 构造函数
RedBlackTree() {
TNULL = new Node;
TNULL->color = 0;
TNULL->left = nullptr;
TNULL->right = nullptr;
root = TNULL;
}

// 前序遍历
void preorder() {
preOrderHelper(this->root);
}

// 中序遍历
void inorder() {
inOrderHelper(this->root);
}

// 后序遍历
void postorder() {
postOrderHelper(this->root);
}

// 搜索树
NodePtr searchTree(int k) {
return searchTreeHelper(this->root, k);
}

// 查找最小值
NodePtr minimum(NodePtr node) {
while (node->left != TNULL) {
node = node->left;
}
return node;
}

// 查找最大值
NodePtr maximum(NodePtr node) {
while (node->right != TNULL) {
node = node->right;
}
return node;
}

// 查找后继
NodePtr successor(NodePtr x) {
if (x->right != TNULL) {
return minimum(x->right);
}

NodePtr y = x->parent;
while (y != TNULL && x == y->right) {
x = y;
y = y->parent;
}
return y;
}

NodePtr predecessor(NodePtr x) {
if (x->left != TNULL) {
return maximum(x->left);
}

NodePtr y = x->parent;
while (y != TNULL && x == y->left) {
x = y;
y = y->parent;
}

return y;
}

void leftRotate(NodePtr x) {
NodePtr y = x->right;
x->right = y->left;
if (y->left != TNULL) {
y->left->parent = x;
}
y->parent = x->parent;
if (x->parent == nullptr) {
this->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x;
x->parent = y;
}

void rightRotate(NodePtr x) {
NodePtr y = x->left;
x->left = y->right;
if (y->right != TNULL) {
y->right->parent = x;
}
y->parent = x->parent;
if (x->parent == nullptr) {
this->root = y;
} else if (x == x->parent->right) {
x->parent->right = y;
} else {
x->parent->left = y;
}
y->right = x;
x->parent = y;
}

// Inserting a node
void insert(int key) {
NodePtr node = new Node;
node->parent = nullptr;
node->data = key;
node->left = TNULL;
node->right = TNULL;
node->color = 1;

NodePtr y = nullptr;
NodePtr x = this->root;

while (x != TNULL) {
y = x;
if (node->data < x->data) {
x = x->left;
} else {
x = x->right;
}
}

node->parent = y;
if (y == nullptr) {
root = node;
} else if (node->data < y->data) {
y->left = node;
} else {
y->right = node;
}

if (node->parent == nullptr) {
node->color = 0;
return;
}

if (node->parent->parent == nullptr) {
return;
}

insertFix(node);
}

NodePtr getRoot() {
return this->root;
}

void deleteNode(int data) {
deleteNodeHelper(this->root, data);
}

void printTree() {
if (root) {
printHelper(this->root, "", true);
}
}
};

int main() {
RedBlackTree bst;
bst.insert(55);
bst.insert(40);
bst.insert(65);
bst.insert(60);
bst.insert(75);
bst.insert(57);

bst.printTree();
cout << endl
<< "After deleting" << endl;
bst.deleteNode(40);
bst.printTree();
}

Red-Black Tree Applications

  1. 用于实现有限映射。
  2. 用于实现 Java 包:java.util.TreeMapjava.util.TreeSet
  3. 用于实现 C++ 标准模板库(STL):multiset、map、multimap。
  4. 在 Linux 内核中应用。